MathNet.Numerics.Signed 3.14.0-beta01

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

Showing the top 20 packages that depend on MathNet.Numerics.Signed.

Packages Downloads
NPOI
.NET port of Apache POI
10
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
9
NPOI
.NET port of Apache POI | Contact us on telegram: https://t.me/npoidevs
7
NPOI
.NET port of Apache POI
7
NPOI
.NET port of Apache POI
4
NPOI
.NET port of Apache POI
3

FFT: MKL native provider backend. FFT: 2D and multi-dimensional FFT (only supported by MKL provider, managed provider pending). FFT: real conjugate-even FFT (only leveraging symmetry in MKL provider). FFT: managed provider significantly faster on x64. Provider Control: separate Control classes for LA and FFT Providers. Provider Control: avoid internal exceptions on provider discovery. Linear Algebra: dot-power on vectors and matrices, supporting native providers. Linear Algebra: matrix Moore-Penrose pseudo-inverse (SVD backed). Root Finding: extend zero-crossing bracketing in derivative-free algorithms. Window: periodic versions of Hamming, Hann, Cosine and Lanczos windows. Special Functions: more robust GammaLowerRegularizedInv (and Gamma.InvCDF). BUG: ODE Solver: fix bug in Runge-Kutta second order routine ~Ksero

This package has no dependencies.

Version Downloads Last updated
5.0.0 15 6/9/2025
5.0.0-beta02 9 6/6/2025
5.0.0-beta01 7 6/10/2025
5.0.0-alpha16 18 6/18/2025
5.0.0-alpha15 17 6/9/2025
5.0.0-alpha14 8 6/6/2025
5.0.0-alpha11 10 6/6/2025
5.0.0-alpha10 9 6/6/2025
5.0.0-alpha09 10 6/10/2025
5.0.0-alpha08 11 6/6/2025
5.0.0-alpha07 18 6/10/2025
5.0.0-alpha06 9 6/10/2025
5.0.0-alpha05 11 6/6/2025
5.0.0-alpha04 10 6/9/2025
5.0.0-alpha03 9 6/6/2025
5.0.0-alpha02 18 6/9/2025
5.0.0-alpha01 12 6/6/2025
4.15.0 10 6/6/2025
4.14.0 17 6/10/2025
4.13.0 16 6/10/2025
4.12.0 7 7/5/2025
4.11.0 10 6/6/2025
4.10.0 9 6/6/2025
4.9.1 10 6/9/2025
4.9.0 10 6/6/2025
4.8.1 8 6/9/2025
4.8.0 11 6/6/2025
4.8.0-beta02 12 6/6/2025
4.8.0-beta01 17 6/6/2025
4.7.0 11 6/6/2025
4.6.0 11 6/6/2025
4.5.0 12 6/6/2025
4.4.1 17 6/9/2025
3.20.2 10 6/8/2025
3.20.1 14 6/9/2025
3.20.0 8 6/6/2025
3.20.0-beta01 10 6/6/2025
3.19.0 10 6/6/2025
3.18.0 13 6/10/2025
3.17.0 11 6/6/2025
3.16.0 11 6/10/2025
3.15.0 9 6/6/2025
3.14.0-beta03 19 6/10/2025
3.14.0-beta02 10 6/6/2025
3.14.0-beta01 9 6/6/2025
3.13.1 15 6/9/2025
3.13.0 9 6/6/2025
3.12.0 10 6/6/2025
3.11.1 16 6/9/2025
3.11.0 9 6/10/2025
3.10.0 15 6/10/2025
3.9.0 10 6/6/2025
3.8.0 8 6/6/2025
3.7.1 10 6/6/2025
3.7.0 9 6/6/2025
3.6.0 7 6/9/2025
3.5.0 7 6/9/2025
3.4.0 10 6/9/2025
3.3.0 10 6/6/2025
3.3.0-beta2 10 6/6/2025
3.3.0-beta1 9 6/6/2025
3.2.3 16 6/8/2025
3.2.2 14 6/20/2025
3.2.1 18 6/9/2025
3.2.0 9 6/6/2025
3.1.0 8 6/6/2025
3.0.2 10 6/8/2025
3.0.1 30 6/18/2025
3.0.0 17 6/9/2025
3.0.0-beta05 9 6/6/2025
3.0.0-beta04 14 6/10/2025
3.0.0-beta03 8 6/6/2025
3.0.0-beta02 8 6/10/2025
3.0.0-beta01 7 6/16/2025
3.0.0-alpha9 8 6/6/2025
3.0.0-alpha8 11 6/6/2025
3.0.0-alpha7 16 6/8/2025
3.0.0-alpha6 9 6/6/2025
3.0.0-alpha5 7 7/5/2025
2.6.1 9 6/6/2025
2.6.0 8 6/9/2025
2.5.0 17 6/9/2025
2.4.0 9 6/6/2025
2.3.0 12 6/20/2025
2.2.1 13 6/16/2025